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ABSTRACT
Intensive home-care surveillance programs are associated with a

marked decrease in the need for hospitalization. They can improve

the functional statuses of elderly patients with severe congestive

diseases. The GPU-based home-care surveillance system is effec-

tive and has a major impact on health expenditure than traditional

surveillance equipments. In this work, we propose a spike sorting

technique as a specific case for the GPU-based home surveillance

system. Spike sorting is the procedure of classifying spikes cor-

responding to the firing neurons. In neuroscience research, spike

sorting is adopted to analyze neural activities, brain functions and

sensation. It is also a key component in cortically-controlled neuro-

prosthetics for patients. In order to efficiently distinguish different

neural spike activities, a robust spike sorting algorithm is required

for above applications. To improve accuracy, multi-channel spike

sorting is necessary. In addition, real-time monitoring for a home-

care system is required. Therefore, we exploit a CUDA implemen-

tation using GPU for acceleration.

Index Terms— Spike sorting, home-care surveillance system,

CUDA

1. INTRODUCTION

The home-care surveillance system is the current trend of modern

health care treatment. Surveillance treatment can replace traditional

hospitals or day-care centers. According to [1], it not only results

in a significant decrease in recurrent hospitalizations for cardiovas-

cular complications, but also reduces the enormous socioeconomic

burden of medical care with these patients. As worldwide health-

care cost-containment escalates, it becomes crucial to develop new

strategies that are cost-effective and that improve the care quality.

The existing home-care systems mainly consist of vision surveil-

lance equipments. However, some disease symptoms cannot be seen

on the video, including pain, the decubitus injury of physical pres-

sure, mental illness, etc.

Fig. 1 shows the operations of a home-care surveillance system.

First, the analog front-end recording devices configured by physi-

cians amplify, digitize and record the bio-signal. Second, the col-

lected data are transmitted from the recording devices to the GPU

device through a RF transmitter to do data processing and comput-

ing. Last, when danger is detected, computer alarms the reaction

device and sends the data to hospitals for clinical treatment.

This project was supported by the GUP Programming course hosted by
National Taiwan University. The authors would like to thank Prof. Wei-Chao
Chen for advising the project and the valuable comments.

In this paper, we exploit a home-care surveillance system via in-

troducing a multi-channel spike sorting technique with a GPU data-

computing flow. We propose a spike sorting algorithm for home-care

surveillance systems that contact hospitals when the damage is de-

tected from the results of neural decoding, such as perilous action,

injured sensation and abnormal neuronal activity.

Spikes are the signals transmitted between neurons in a form of

electronic action potential. Through extracellular electrode arrays,

each channel records neural signals from multiple neurons. Since

the knowledge in the firing pattern of neural signals from individual

neuron is highly desirable, the identification of each neuron from

the recorded spike trains is necessary. This process is commonly

referred as spike sorting. Currently, spike sorting is mainly used in

the research of neuroscience and cortical control prosthesis. It is

essential for studying neural activities and sensation in neuroscience

research. It provides brain functions that communicate with outside

world through cortical controlled prosthesis by spinal cord injured

patients and those with the Parkinson disease or epilepsy. Once the

spikes are accurately classified, neural modeling and decoding can

interpret groups of spikes into control commands to prosthesis or

actuators. Since the results of the neural decoding are less significant

without an accurate spike sorting, robust sorting performance is a

critical issue [2]. Besides, home-care surveillance systems require

real-time processing capabilities to react to patients’ symptoms or

motion intention in time.

Computation time and accuracy are the critical issues for off-

site spike sorters. Since the classification of spikes depends on the

features extracted from the spike waveforms, a better sorting per-

formance usually comes with a higher sampling rate. We introduce

cubic spline interpolation to reconstruct waveforms with high sam-

pling rate before feature extraction. However, interpolation increases

complexity. We accelerate the sorting procedure through GPU.

Fig. 2 shows a multi-channel spike sorting system. After ampli-

fying and converting the recorded signals from analog to digital, the

digital bio-signal processing technique is applied to find and classify

the spikes. In this paper, we implement off-site spike sorters with

spike detection, interpolation, feature extraction on GPU, and with

classification on CPU. A better sorting performance with high signal

resolution could be achieved.

The remainder of this paper is organized as follows. In Sec-

tion 2, the algorithms used in the off-site spike sorter for each spike

sorting steps are introduced. Section 3 states the CUDA implemen-

tation in detail. Section 4 demonstrates the improvement on pro-

cessing time without degrading the performance on a GPU platform.

Section 5 concludes this work.

978-1-61284-350-6/11/$26.00 ©2011 IEEE



�����

��	
 ����

��������� �����	���	

�	����	

����������
�������	
������
�


���
��������
�	����
���


�������� ����� �
��������
���


!
��������
������ ����


��������	
��	��
�����	
���
��

Fig. 1. Home-care surveillance system based on GPU computing.
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Fig. 2. Multi-channel spike sorting system.
.

2. PROPOSED ALGORITHM

The main algorithm flow for single spike sorting is shown in Fig. 3.

Spike sorting generally consists of four main parts: the spike detec-

tion to allocate the spike events, the spike interpolation and align-

ment to enhance the signal resolution and to improve accuracy, the

feature extraction to compute the dominant features and to perform

the dimension reduction, and the clustering to classify the detected

spikes into groups according to the extracted features.

2.1. Spike Detection

In the previous state-of-the-art designs [3, 4], the spike detection is

implemented by simple comparison to a voltage threshold. However,

this spike detection algorithm may result in many miss detections or

false alarms, because the threshold value is critical and hard to de-

fine. Therefore, another algorithm called nonlinear energy operator

(NEO), first characterized by Kaiser [5], is suggested by [6]. The

NEO is composed of nonlinear energy operation and adaptive thresh-

olding. The first step, nonlinear operation, is processed according to

Eq. 1,

Y [n] = x[n]2 − x[n + p]×x[n − p] (1)

where x[n] is the nth input discrete signal sample and Y [n] is the

NEO value. p denotes the temporal position offset. If the neural

signal varies dramatically, usually occurs around spikes, the NEO

value increases. Then a simple comparator-based thresholding is

adopted to NEO value. The threshold value depends on data, such

as 1.2 × (standard deviation of input signal) in our statistical

analysis. The NEO algorithm identifies the spikes using the localized

instantaneous energy and is robust against the low-frequency noise.

2.2. Spike Interpolation and Alignment

According to [7], sampling skew is one of the main issues that causes

the waveform distortion and results in the degradation of the sorting

performance. Fig. 4 demonstrates the waveform distortion caused

by the sampling skew. Three spikes generated by the same neuron

are shown in Fig. 4 (a). However, because of the sampling skew, sig-

nificant differences between three spikes appear after the waveform

alignment along the amplitude peaks (Fig. 4 (b)). The most obvious

distortions happens in the neural polarization and depolarization re-

gions (i.e., peak and valley) which are the most significant waveform

characteristics used for spike sorting.

Since the variation of spikes is rapid but smooth and continu-

ous, we choose cubic spline interpolation to reconstruct the spike

waveforms. Cubic spline interpolation constructs a spike with n−1
piecewise third-order cubic polynomials between n sample points



��
����
�	�����

���"	���
����

���"	
�	�	����� ������	�� �	
��
	

()�

����� ��
������
����*��	
���
����

�
+�
�
�


Fig. 3. Single-channel spike sorting algorithm flow.

(a) (b)

Fig. 4. The waveform distortion caused by the sampling skew. The
background waveforms are sampled at the rate of 100K sample per
second (sps), while the foregrounds are sampled at 12.5Ksps. (a)
Three spikes generated by the same neuron with different sampling
time. (b) Significant differences can be seen between three spikes at
12.5Ksps after peak alignment.

(y1, y2, ..., yn). The polynomial curves are represented by,

Yi(t) = ai + bit + cit
2 + dit

3 (2)

where t ∈ [0, 1] and i = 1, 2, ..., n−1. The properties of cubic

interpolation are described by Eq. 3,

Yi−1(1) = yi

Yi(0) = yi

Y ′
i−1(1) = Y ′

i (0)
Y ′′

i−1(1) = Y ′′
i (0)

(3)

where Y ′
i and Y ′′

i are the first and second differentiation of ith cu-

bic polynomials. That is, the first and the second differentiation are

continuous on source data points. Commonly, the first and second

derivative is set to zero as boundary conditions at the endpoints.

The differential equation has been simplified into tri-diagonal ma-

trix computation in Eq. 4. The coefficient of ith third-order poly-

nomial can be expressed via Eq. 5. Di indicates the function’s first

derivative (i.e., Y ′
i (0)). Once the polynomial is solved, we interpo-

late spikes by substituting the equal-division points into Eq. 2. Af-

terward, the peak alignment is executed for the up-sampled spikes.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
1 4 1

...
...

...
...

...
...

...

1 4 1
1 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0

D1

D2

D3

...

...

Dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(y1 − y0)
3(y2 − y0)
3(y3 − y1)

...

3(yn−1 − yn−3)
3(yn − yn−2)
3(yn − yn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

ai = yi

bi = Di

ci = 3(yi+1 − yi) − 2Di − Di+1

di = 2(yi − yi+1) + Di + Di+1

(5)

2.3. Feature Extraction and Classification

As for feature extraction, the most intuitive method would be to take

basic characteristics of waveform shapes, such as peak-to-peak am-

plitudes and timing intervals as features. This simple algorithm has

little computation time, but is poor in distinguishing spikes of dif-

ferent clusters especially when the SNR is low. Other algorithms

based on principal component analysis (PCA) [8] and discrete Haar

wavelet transformation (DWT) [9] are demonstrated with better sort-

ing performance. Haar wavelet transformation is formulated accord-

ing to Eq. 6 and Eq. 7,

W (m) =
1

(
√

m)

∑
x[t]ψ(t/m) (6)

ψ(t) = { 1, 0 ≤ t < 1
2−1, 1

2
≤ t < 1

(7)

Fig. 5 shows the example of Haar DWT operation for sequence

x. A wavelet-PCA-based feature extraction scheme is then pro-
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Fig. 5. Haar DWT operation for seq x.
.
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Fig. 6. Resource mapping flow for GPU.

posed. PCA involves the calculation of the eigenvalue decompo-

sition of a data covariance matrix or the singular value decomposi-

tion of a data matrix. It is performed after the discrete Haar wavelet

transformation to reduce dimensions and to do coefficient selection.

The classification based on the Watershed segmentation algo-

rithm is adopted to sort the spikes in the reduced feature space. As

described in [10], Watershed transformation is used to find the catch-

ment basin (i.e., local minima) in the gradient feature space image

using the flooding procedure. The catchment basins founded are

labeled as different clusters. Since Watershed outperforms other al-

gorithms especially in overlapped clusters and non-circle clusters, it

is applied to the spike classification.

In summary, the NEO, cubic spline interpolation and PCA with

DWT are chosen because of their robustness against noise and ben-

efits to accuracy. For the spike detection, the NEO operator is first

performed. Then, the spike events are detected when the NEO value

exceeds a threshold at the peaks of the convex curves of the origi-

nal neural waveforms. Signal resolution is increased by cubic spline

interpolation in order to raise sorting accuracy. For the feature ex-

traction, the DWT is followed by PCA. Finally, we use Watershed

segmentation algorithm to classify the clusters.

3. CUDA IMPLEMENTATION

In this section, a GPU-based multi-channel spike sorting design is

investigated. We develop a 32 channel spike sorting algorithm on a

G80 GPU with CUDA implementation and CPU co-design. Consid-

ering the complexity and data parallelism, the Watershed clustering

is not suitable for CUDA implementation and therefore is imple-

mented using CPU. We benchmarked the processing time on a Duo-

Core 2.8GHz CPU for four modules in our spike sorting algorithm

(Fig. 7). The result shows that the spike detection and the spike in-

terpolation costs 27.5% and 57.9% computation time, respectively.

For feature extraction, it costs 8.8% computation time for Wavelet

calculation and PCA projection. Since the eigenvalues are similar

for spike data, they are pre-calculated to reduce complexity. For

alignment, only 5.8% computation power is needed. In our experi-

ments, the correct rate of classification drops slightly without align-

ment module for multi-channel spike sorting. We therefore simplify

the overall algorithm. The spike interpolation is directly followed by

feature extraction. In conclusion, only NEO spike detection, cubic

spline interpolation and two-dimensional PCA projection with Haar

wavelet calculation are implemented with CUDA.

For NEO spike detection kernel, it loads S data points, which is

called a slot, once at a time from the global memory to the shared

memory for processing. Besides, it costs 4 bytes (float type) for each

data point. The total number of slots per channel is equal to the total

data points per channel divided by S. Hence, the number of blocks

depends on these slots. The first slot of each channel is firstly pro-

cessed. In our case, the one-dimensional block with the size rang-

ing from 8 to 64 is considered. The number of threads is decided

considering data point parallelism. T one-dimensional threads are

declared to process T data points in parallel. Noting that S should

not be less than T . In our case, S is set to 512 and T is set to 256.

However, NEO needs to access value of the previous and the next

data point. The access of shared memory may cause bank conflicts.

Therefore, for a data point at time position K, we also store value

of data point K−p and K+p in the shared memory in order to pre-

vent bank conflict problems. If p equals to 1 and S equals to 512,

512×3×4= 6 KB are required for the shared memory for handling

512 data points. The same idea is also applied to spike interpolation.

After spike detection, the order of spike number is much smaller than

that of original data points of each channel. The number of blocks

depends on the number of spikes detected. We decide the number of

threads according to data points of each spike needed to be interpo-

lated. For instance, we interpolate each original spike from 32 points

to 64 points, which means one-dimensional thread number is set to

32 for the kernel. The cubic spline interpolation has no data depen-

dency in the interpolation procedure and is suitable for processing in

parallel. The intermediate values for interpolation are stored in local

memory. As for feature extraction, the one-dimensional thread num-

ber is equal to 32 which is identical to the original spike size due to

further wavelet calculation. The number of blocks is the same as that

in the interpolation procedure. For wavelet calculation, both summa-



�@A%B

%@ACB

%ADB
DADB

�
��	���������	��
�������

���"	��	�	�����

���"	����	
���
����

���"	�
�����	��

��2�
��������
�4	�����

Fig. 7. Time profiling for the proposed spike sorting on a CPU plat-
form.

tion and subtraction operations are executed for two data points set

by set in a spike window. The results are reordered to form a Haar

wavelet feature. All wavelet waveforms are then reduced to two-

dimensional feature vectors using PCA projection, which is enough

to maintain classification accuracy. Fig. 6 illustrates the resource

mapping flow and the order of data processed in each stage.

4. EXPERIMENTAL RESULTS

The simulation neural signal data comes from the database in [11]

from recordings the neocortex of mice. The raw data is recorded with

25K Hz sampling rate and there are about 220 data points per chan-

nel originally. After spike detection, around 211 spikes are detected

for each channel. For each detected spike, the corresponding spike

window is determined as input to the feature extraction module. A

spike window consists of N×U data points according to the origi-

nal spike size N and the interpolation up-sampling factor U . Hence,

about 211×N×U data points per channel are processed for Wavelet

calculation and PCA projection. In our experiments, we set N to 32

and U to 2. As to Watershed clustering, for each channel, there are

3 kinds of spikes, which suggests 3 classes should be annotated for

spike data in the feature domain.

Fig. 8 shows the time comparison between CPU and GPU. We

use 32 channels for profiling. For CPU, it needs 3942.8 ms for spike

interpolation. However, it costs only 83.8 for the CUDA version and

speeds up to 44 times compared to the CPU version. Totally, with

CUDA implementation, it speeds up to about 8 times. In addition,

we also test another signal data in the order of 219 per channel. The

higher the order of signal data is, the more impacts the CUDA-based

implementation has.

In the following experiments, we demonstrate the results of each

module via CUDA implementation. Two data sets are used for test-

ing (Dataset1 and Dataset2). Fig. 9 shows the NEO spike detection

results. If a spike is detected, we set a value one to the corresponding

position index. For instance, Fig. 9(a) shows the original signal data

and the corresponding detected spikes in the position indices 1331,

1742, 1988 and 2057 with value one. Compared to the CPU ver-

sion, the detected results are identical but less computational power

is needed for the GPU version. The results of cubic spline inter-

polation using CUDA implementation are shown in Fig. 10. Af-

ter interpolation, the spike waves become much smoother. There-

fore, the interpolated spike contains 64 data points with U being

equal to 2. Fig. 11 shows the improvement of neuron cluster sepa-

ration after interpolation. The original neural signals are sampled at

25Ksps (left). The spike waveforms are re-aligned after up-sampling

to 50Ksps through cubic spline interpolation. As observed, the sort-

ing performance significantly increases after interpolation. The PCA
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Fig. 8. Time comparison between CPU and GPU implementation.
Raw data order equals 220 and 219 with total 32 channels.
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Fig. 9. NEO spike detection results using GPU (a) Dataset1. (b)
Dataset2. The upper row is the original signal and the lower row
shows the corresponding detected spikes.

projection is performed after the wavelet transformation. 64 data

points are projected to the two principal dimensions by multiplying

the corresponding eigen-vectors. Fig. 12(a)(b) show the projected in-

terpolated spikes in the feature space. Finally, we apply CPU-based

Watershed clustering on the feature space for classifying the spikes

into 3 categories (Fig. 12(c)(d)).

5. CONCLUSION

In this paper, we introduce a spike sorting technique to monitor the

non-action symptom as an example for the future home-care surveil-

lance system. Robust performance and real-time monitoring is es-

sential for the proposed system. A multi-channel spike sorting sys-

tem and the corresponding algorithm flow are proposed. The spike

detection, spike interpolation and feature extraction are implemented

using GPU in order to accelerate the processing speed. The high

system performance is achieved through GPU-CPU co-design. In

the future, GPU can be combined into an off-site home-care center

system that processes not only for spike sorting but also for other

bio-signal processing such as EEG or heart signal. It is obvious that

GPU can support powerful computation capability to handle huge

amount of data. It is therefore proper to provide real-time monitor-

ing and signal visualization.



(a) (b) (c) (d)

Fig. 10. Cubic spline interpolation using GPU with interpolation factor 2. (a) Dataset1 before interpolation. (b) Dataset1 after interpolation.
(c) Dataset2 before interpolation. (d) Dataset2 after interpolation. The red circles indicate the difference between and after interpolation.

(a) (b) (c) (d)

Fig. 12. Feature extraction using GPU and Watershed classification using CPU. (a) Dataset1 for Wavelet and PCA feature extraction results.
(b) Dataset2 for Wavelet and PCA feature extraction results. (c) Dataset1 for clustering. (d) Dataset2 for clustering.

(a)

(b)

Fig. 11. The improvement of neuron cluster separation after the in-
terpolation. The original neural signals are sampled at 25Ksps as
shown in (a). For (b), the spike waveforms are re-aligned after up-
sampling to 50Ksps via interpolation. Since the synthesized neural
data from [11] are used, different colors corresponding to different
neurons are drawn according to the golden standards (not the classi-
fication results).
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